This page contains a list of the greatest German Mathematicians. The pantheon dataset contains 823 Mathematicians, 93 of which were born in Germany. This makes Germany the birth place of the 3rd most number of Mathematicians behind United Kingdom and France.

The following people are considered by Pantheon to be the top 10 most legendary German Mathematicians of all time. This list of famous German Mathematicians is sorted by HPI (Historical Popularity Index), a metric that aggregates information on a biography’s online popularity. Visit the rankings page to view the entire list of German Mathematicians.

With an HPI of 87.89, Carl Friedrich Gauss is the most famous German Mathematician. His biography has been translated into 148 different languages on wikipedia.

Johann Carl Friedrich Gauss (German: Gauß [kaʁl ˈfʁiːdʁɪç ˈɡaʊs] ; Latin: Carolus Fridericus Gauss; 30 April 1777 – 23 February 1855) was a German mathematician, geodesist, and physicist who made significant contributions to many fields in mathematics and science. Gauss ranks among history's most influential mathematicians. He has been referred to as the "Prince of Mathematicians".Gauss was a child prodigy in mathematics. While still a student at the University of Göttingen, he propounded several mathematical theorems. Gauss completed his masterpieces Disquisitiones Arithmeticae and Theoria motus corporum coelestium as a private scholar. Later he was director of the Göttingen Observatory and professor at the university for nearly half a century, from 1807 until his death in 1855. Gauss published the second and third complete proofs of the fundamental theorem of algebra, made contributions to number theory and developed the theories of binary and ternary quadratic forms. He is credited with inventing the fast Fourier transform algorithm and was instrumental in the discovery of the dwarf planet Ceres. His work on the motion of planetoids disturbed by large planets led to the introduction of the Gaussian gravitational constant and the method of least squares, which he discovered before Adrien-Marie Legendre published on the method, and which is still used in all sciences to minimize measurement error. He also anticipated non-Euclidean geometry, and was the first to analyze it, even coining the term. He is considered one of its discoverers alongside Nikolai Lobachevsky and János Bolyai.Gauss invented the heliotrope in 1821, a magnetometer in 1833 and, alongside Wilhelm Eduard Weber, invented the first electromagnetic telegraph in 1833.Gauss was a careful author. He refused to publish incomplete work. Although he published extensively during his life, he left behind several works to be published posthumously. Although Gauss was known to dislike teaching, some of his students became influential mathematicians. He believed that the act of learning, not possession of knowledge, provided the greatest enjoyment.

With an HPI of 85.38, Gottfried Wilhelm Leibniz is the 2nd most famous German Mathematician. His biography has been translated into 147 different languages.

Gottfried Wilhelm (von) Leibniz (1 July 1646 [O.S. 21 June] – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. Leibniz has been called the "last universal genius" due to his knowledge and skills in different fields and because such people became less common during the Industrial Revolution and spread of specialized labor after his lifetime. He is a prominent figure in both the history of philosophy and the history of mathematics. He wrote works on philosophy, theology, ethics, politics, law, history, philology, games, music, and other studies. Leibniz also made major contributions to physics and technology, and anticipated notions that surfaced much later in probability theory, biology, medicine, geology, psychology, linguistics and computer science. In addition, he contributed to the field of library science by devising a cataloguing system whilst working at Wolfenbüttel library in Germany that would have served as a guide for many of Europe's largest libraries. Leibniz's contributions to a wide range of subjects were scattered in various learned journals, in tens of thousands of letters and in unpublished manuscripts. He wrote in several languages, primarily in Latin, French and German.As a philosopher, he was a leading representative of 17th-century rationalism and idealism. As a mathematician, his major achievement was the development of the main ideas of differential and integral calculus, independently of Isaac Newton's contemporaneous developments. Mathematicians have consistently favored Leibniz's notation as the conventional and more exact expression of calculus.In the 20th century, Leibniz's notions of the law of continuity and transcendental law of homogeneity found a consistent mathematical formulation by means of non-standard analysis. He was also a pioneer in the field of mechanical calculators. While working on adding automatic multiplication and division to Pascal's calculator, he was the first to describe a pinwheel calculator in 1685 and invented the Leibniz wheel, later used in the arithmometer, the first mass-produced mechanical calculator. In philosophy and theology, Leibniz is most noted for his optimism, i.e. his conclusion that our world is, in a qualified sense, the best possible world that God could have created, a view sometimes lampooned by other thinkers, such as Voltaire in his satirical novella Candide. Leibniz, along with René Descartes and Baruch Spinoza, was one of the three influential early modern rationalists. His philosophy also assimilates elements of the scholastic tradition, notably the assumption that some substantive knowledge of reality can be achieved by reasoning from first principles or prior definitions. The work of Leibniz anticipated modern logic and still influences contemporary analytic philosophy, such as its adopted use of the term "possible world" to define modal notions.

With an HPI of 79.62, Bernhard Riemann is the 3rd most famous German Mathematician. His biography has been translated into 97 different languages.

Georg Friedrich Bernhard Riemann (German: [ˈɡeːɔʁk ˈfʁiːdʁɪç ˈbɛʁnhaʁt ˈʁiːman] ; 17 September 1826 – 20 July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as a foundational paper of analytic number theory. Through his pioneering contributions to differential geometry, Riemann laid the foundations of the mathematics of general relativity. He is considered by many to be one of the greatest mathematicians of all time.

With an HPI of 72.67, Peter Gustav Lejeune Dirichlet is the 4th most famous German Mathematician. His biography has been translated into 56 different languages.

Johann Peter Gustav Lejeune Dirichlet (German: [ləˈʒœn diʁiˈkleː]; 13 February 1805 – 5 May 1859) was a German mathematician who made contributions to number theory (including creating the field of analytic number theory), and to the theory of Fourier series and other topics in mathematical analysis; he is credited with being one of the first mathematicians to give the modern formal definition of a function. Although his surname is Lejeune Dirichlet, he is commonly referred to by his mononym Dirichlet, in particular for results named after him.

With an HPI of 72.19, Gottlob Frege is the 5th most famous German Mathematician. His biography has been translated into 69 different languages.

Friedrich Ludwig Gottlob Frege (; German: [ˈɡɔtloːp ˈfreːɡə]; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic philosophy, concentrating on the philosophy of language, logic, and mathematics. Though he was largely ignored during his lifetime, Giuseppe Peano (1858–1932), Bertrand Russell (1872–1970), and, to some extent, Ludwig Wittgenstein (1889–1951) introduced his work to later generations of philosophers. Frege is widely considered to be the greatest logician since Aristotle, and one of the most profound philosophers of mathematics ever.His contributions include the development of modern logic in the Begriffsschrift and work in the foundations of mathematics. His book the Foundations of Arithmetic is the seminal text of the logicist project, and is cited by Michael Dummett as where to pinpoint the linguistic turn. His philosophical papers "On Sense and Reference" and "The Thought" are also widely cited. The former argues for two different types of meaning and descriptivism. In Foundations and "The Thought", Frege argues for Platonism against psychologism or formalism, concerning numbers and propositions respectively. Russell's paradox undermined the logicist project by showing Frege's Basic Law V in the Foundations to be false.

With an HPI of 71.39, Emmy Noether is the 6th most famous German Mathematician. Her biography has been translated into 76 different languages.

Amalie Emmy Noether (US: , UK: ; German: [ˈnøːtɐ]; 23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She discovered Noether's first and second theorems, which are fundamental in mathematical physics. She was described by Pavel Alexandrov, Albert Einstein, Jean Dieudonné, Hermann Weyl and Norbert Wiener as the most important woman in the history of mathematics. As one of the leading mathematicians of her time, she developed theories of rings, fields, and algebras. In physics, Noether's theorem explains the connection between symmetry and conservation laws.Noether was born to a Jewish family in the Franconian town of Erlangen; her father was the mathematician Max Noether. She originally planned to teach French and English after passing the required examinations, but instead studied mathematics at the University of Erlangen, where her father lectured. After completing her doctorate in 1907 under the supervision of Paul Gordan, she worked at the Mathematical Institute of Erlangen without pay for seven years. At the time, women were largely excluded from academic positions. In 1915, she was invited by David Hilbert and Felix Klein to join the mathematics department at the University of Göttingen, a world-renowned center of mathematical research. The philosophical faculty objected, however, and she spent four years lecturing under Hilbert's name. Her habilitation was approved in 1919, allowing her to obtain the rank of Privatdozent.Noether remained a leading member of the Göttingen mathematics department until 1933; her students were sometimes called the "Noether boys". In 1924, Dutch mathematician B. L. van der Waerden joined her circle and soon became the leading expositor of Noether's ideas; her work was the foundation for the second volume of his influential 1931 textbook, Moderne Algebra. By the time of her plenary address at the 1932 International Congress of Mathematicians in Zürich, her algebraic acumen was recognized around the world. The following year, Germany's Nazi government dismissed Jews from university positions, and Noether moved to the United States to take up a position at Bryn Mawr College in Pennsylvania, where she taught doctoral and post-graduate women including Marie Johanna Weiss, Ruth Stauffer, Grace Shover Quinn and Olga Taussky-Todd. At the same time, she lectured and performed research at the Institute for Advanced Study in Princeton, New Jersey.Noether's mathematical work has been divided into three "epochs". In the first (1908–1919), she made contributions to the theories of algebraic invariants and number fields. Her work on differential invariants in the calculus of variations, Noether's theorem, has been called "one of the most important mathematical theorems ever proved in guiding the development of modern physics". In the second epoch (1920–1926), she began work that "changed the face of [abstract] algebra". In her classic 1921 paper Idealtheorie in Ringbereichen (Theory of Ideals in Ring Domains), Noether developed the theory of ideals in commutative rings into a tool with wide-ranging applications. She made elegant use of the ascending chain condition, and objects satisfying it are named Noetherian in her honor. In the third epoch (1927–1935), she published works on noncommutative algebras and hypercomplex numbers and united the representation theory of groups with the theory of modules and ideals. In addition to her own publications, Noether was generous with her ideas and is credited with several lines of research published by other mathematicians, even in fields far removed from her main work, such as algebraic topology.

With an HPI of 69.37, Karl Weierstrass is the 7th most famous German Mathematician. His biography has been translated into 60 different languages.

Karl Theodor Wilhelm Weierstrass (German: Weierstraß [ˈvaɪɐʃtʁaːs]; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the "father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school teacher, eventually teaching mathematics, physics, botany and gymnastics. He later received an honorary doctorate and became professor of mathematics in Berlin. Among many other contributions, Weierstrass formalized the definition of the continuity of a function and complex analysis, proved the intermediate value theorem and the Bolzano–Weierstrass theorem, and used the latter to study the properties of continuous functions on closed bounded intervals.

With an HPI of 68.49, August Ferdinand Möbius is the 8th most famous German Mathematician. His biography has been translated into 53 different languages.

August Ferdinand Möbius (UK: , US: ; German: [ˈmøːbi̯ʊs]; 17 November 1790 – 26 September 1868) was a German mathematician and theoretical astronomer.

With an HPI of 68.20, Ludolph van Ceulen is the 9th most famous German Mathematician. His biography has been translated into 40 different languages.

Ludolph van Ceulen (German: [fan ˈkɔʏlən], Dutch: [vɑŋˈkøːlə(n)]; 28 January 1540 – 31 December 1610) was a German-Dutch mathematician from Hildesheim. He emigrated to the Netherlands.

With an HPI of 67.33, Richard Dedekind is the 10th most famous German Mathematician. His biography has been translated into 58 different languages.

Julius Wilhelm Richard Dedekind [ˈdeːdəˌkɪnt] (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His best known contribution is the definition of real numbers through the notion of Dedekind cut. He is also considered a pioneer in the development of modern set theory and of the philosophy of mathematics known as Logicism.

Pantheon has 93 people classified as mathematicians born between 1013 and 1987. Of these 93, 7 (7.53%) of them are still alive today. The most famous living mathematicians include Robert Aumann, Gerd Faltings, and Hillel Furstenberg. The most famous deceased mathematicians include Carl Friedrich Gauss, Gottfried Wilhelm Leibniz, and Bernhard Riemann. As of April 2022, 7 new mathematicians have been added to Pantheon including Johann Samuel König, Johann Karl Burckhardt, and Jordanus de Nemore.

## Robert Aumann

1930 - Present

**HPI:**61.89## Gerd Faltings

1954 - Present

**HPI:**50.47## Hillel Furstenberg

1935 - Present

**HPI:**49.43## Michael Artin

1934 - Present

**HPI:**48.78## Wendelin Werner

1968 - Present

**HPI:**45.64## Volker Strassen

1936 - Present

**HPI:**42.46## Peter Scholze

1987 - Present

**HPI:**38.95

## Carl Friedrich Gauss

1777 - 1855

**HPI:**87.89## Gottfried Wilhelm Leibniz

1646 - 1716

**HPI:**85.38## Bernhard Riemann

1826 - 1866

**HPI:**79.62## Peter Gustav Lejeune Dirichlet

1805 - 1859

**HPI:**72.67## Gottlob Frege

1848 - 1925

**HPI:**72.19## Emmy Noether

1882 - 1935

**HPI:**71.39## Karl Weierstrass

1815 - 1897

**HPI:**69.37## August Ferdinand Möbius

1790 - 1868

**HPI:**68.49## Ludolph van Ceulen

1540 - 1610

**HPI:**68.20## Richard Dedekind

1831 - 1916

**HPI:**67.33## Regiomontanus

1436 - 1476

**HPI:**67.06## Alexander Grothendieck

1928 - 2014

**HPI:**67.05

## Johann Samuel König

1712 - 1757

**HPI:**52.19## Johann Karl Burckhardt

1773 - 1825

**HPI:**47.86## Jordanus de Nemore

**HPI:**47.66## Leonard Nelson

1882 - 1927

**HPI:**45.52## Erich Kähler

1906 - 2000

**HPI:**44.90## Oskar Perron

1880 - 1975

**HPI:**43.80## Heinz Prüfer

1896 - 1934

**HPI:**42.55

Which Mathematicians were alive at the same time? This visualization shows the lifespans of the 25 most globally memorable Mathematicians since 1700.